A full-scale spiking model of the local cortical network

Markus Diesmann

Institute of Neuroscience and Medicine (INM-6)
Institute for Advanced Simulation (IAS-6)
Jülich Research Centre

Medical Faculty, RWTH Aachen

May 14th-16th 2014, Alghero
Outline

- construction of local cortical network model
- stationary state
- target specificity
- transients and a hypothesis
- critique of local network models
- necessity of brain-scale models
- enabling dissemination of the model
Minimal layered cortical network model

- extending the successful 2 population model
- understand impact of structure on observed dynamics
- explain cell type specific spike rates
- main work by Tobias C Potjans

Feasibility and structural constraints

- connectivity $c = 0.1$
- synapses per neuron $= 10^4$
 \Rightarrow minimal network size $= 10^5$

network $N = 10^5$
- considered elementary unit
- corresponding to 1 mm3

\Rightarrow possible

Morrison, Mehring, Geisel, Aertsen, Diesmann (2005) *Neural Computation* 17:1776–1801

Fundamental interactions

- current injection into pre-synaptic neuron causes excursions of membrane potential
- supra-threshold value causes spike transmitted to post-synaptic neuron
- post-synaptic neuron responds with small excursion of potential after delay
- inhibitory neurons (20%) cause negative excursion

- each neuron receives input from 10,000 other neurons
- causing large fluctuations of membrane potential
- emission rate of 1 to 10 spikes per second
Minimal layered cortical network model

- 1 mm³
- 1 billion synapses, 100,000 neurons
- 2 populations of neurons (E,I) per layer
- E and I identical neuronal dynamics
- laterally homogeneous connectivity
- layer- and type-specific C_{ij}^{xy}
Anatomical data sets

in vivo anatomy

in vitro physiology

Type of connection	Connectivity ratio
L5 pyramid to L5 pyramid | 1:11 (15:163)
L2/3 pyramid to L2/3 pyramid | 1:4 (65:247)
L4 excitatory to L4 excitatory | 1:10 (8:81)
L3 pyramid to L5 pyramid | 1:5.7 (4:23)
(Presynaptic apical dendrite) | 1:1 (1:1)
L5 pyramid to L3 pyramid | 1:4 (7:73)
L4 excitatory to L3 pyramid | 1:10 (7:70)
(Presynaptic spiny stellates, n = 4) | 1:10 (7:70)
L5 pyramid to L5 interneuron | 1:10.4 (7:73)
L5 interneuron to L5 pyramid | 1.8 (5:73)

(Binzegger et al. 2004) (Thomson et al. 2002)
Consistency of connection probabilities

- yellow within layer, green across
- inconsistent averages
- consistent architectural relations
Lateral connectivity

- correction for sampling radius using Gaussian model of distance dependents
Target specificity

- correction for bias in anatomical method

May 14th-16th 2014, Alghero
Convergence and divergence

- dominated by within-layer connections
- $e \rightarrow e$ divergence reflects "standard" loop
- $e \rightarrow i$ divergence reflects target-specific feedback
Simulation Technology: the NEST Initiative

collaborative effort and community building

Major goals:

- systematically publish new simulation technology
- produce public releases under GPL

- origins in 1994, collaboration of several labs (since 2001)
- registered society (since 2012)
- teaching in international advanced courses:
 - Okinawa Computational Neuroscience Course OCNC, Japan
 - Advanced Course in Computational Neuroscience ACCN, Europe
 - Latin American School on Computational Neuroscience LASCON, South America

- core technology of
 - e.g.: Morrison, …, Diesmann (2005) *Neural Computation*
 - Zaytsev, Morrison (2013) *Frontiers in Neuroinformatics*
Local cortical microcircuit

taking into account layer and neuron-type specific connectivity is sufficient to reproduce experimentally observed:

- asynchronous-irregular spiking of neurons
- higher spike rate of inhibitory neurons
- correct distribution of spike rates across layers

Potjans TC & Diesmann M (2014) The cell-type specific connectivity of the local cortical network explains prominent features of neuronal activity. Cerebral Cortex 24 (3): 785-806
Response to transient inputs

- **A**: Evoked response
- **B**: Response to transient inputs at 5 Hz for layers L2/3, L4, L5e, and L6e.

Sakata and Harris (2009) Neuron
Response to transient inputs

- $T = -0.4$

- $T = +0.4$
Hypothesis on cortical flow of activity

- handshaking between layers

Building block for functional studies

Layer-dependent attentional processing by top-down signals in a visual cortical microcircuit model

Nobuhiko Wagatsuma¹,²*, Tobias C. Potjans³,⁴,⁵, Markus Diesmann¹,³,⁴ and Tomoki Fukai¹,⁴,⁶

¹ RIKEN Brain Science Institute, Wako, Japan
² Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
³ Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Juelich, Juelich, Germany
⁴ Brain and Neural Systems Team, RIKEN Computational Science Research Program, Wako, Japan
⁵ Faculty of Biology III, Albert-Ludwigs-University Freiburg, Freiburg, Germany
⁶ Core Research of Evolutional Science and Technology, Japan Science and Technology

Building block for mesoscopic studies

- David Dahmen, Jannis Schücker, Tom Tetzlaff
- in EU BrainScaleS with Gaute Einevoll (UMB, Norway)

Critique of local network models

Local Cortical Network Connections:
- ✓ local connections
- ✓ realistic synaptic modeling
- ❌ a major part of synapses missing
- ↪ input dependent local network dynamics

Cortical Area Network Connections:
- ✓ intrinsic connections
- ❌ many synapses missing

Brain-scale Connections:
- ✓ all connections
- ↤ bottom-up and top-down approach meet on this level

Brain and Neural Systems Team, RIKEN Computational Science Research Program
Pilot study: jinb33 (2008) Eugene Brain-scale simulations FZ Juelich

May 14th-16th 2014, Alghero
Brain-scale connectivity

a network of networks with at least three levels of organization:

- neurons in local microcircuit models are missing 50% of synapses
- e.g., power spectrum shows discrepancies, slow oscillations missing
- solution by taking brain-scale anatomy into account
Meso- and macro-scale measures

brain-scale networks provide the substrate for

mesoscopic measures
- local field potential (LFP)
- voltage sensitive dyes (VSD)

and macroscopic measures
- EEG, MEG
- fMRI resting state networks

connecting biophysical modeling to the field of neuroimaging

May 14th-16th 2014, Alghero

S Kunkel
Multi-area model of macaque visual cortex

- macroscopic connectivity data for macaque visual cortex most complete
- prototype for human brain
- model 1: cubic millimeter multi-layered microcircuits connected by inter-area network
- model 2: realistic relative size of cortical areas
- model 3: full-scale

- matrix shows in-degree onto target areas in relative proportions
- data from CoCoMac database (Rembrandt Bakker curator) enriched by quantitative data from Kennedy lab (Markov et al., 2012)
- model enables iterative data integration
Multi-area model of macaque visual cortex

- Max Schmidt, Sacha van Albada, Rembrandt Bakker

Population-specific firing rates with areas arranged according to Felleman and Van Essen hierarchy

May 14th-16th 2014, Alghero
Record simulation 2013

- largest simulation to date
- scales to largest computers (petascale)
- worst case scenario: random network
- well picked up by media
- manuscript in preparation
- MoU with RIKEN AICS in Kobe

Future plans (HBP ramp-up phase):
- release 4g simulation kernel for production

Future plans (HBP operational phase):
- exploit massive parallelism of processors
- develop communication architecture for exascale systems
- develop and promote interactive supercomputing
A new connection routine

Obstacles so far:

- No published connection routine in NEST or PyNN which randomly connects the neurons of two populations given the total number of connections.
- No flexibility in choosing the distribution of the synapse parameter which allowed for connecting a large network in an adequate time span.

nest.Connect() and its relation to PyNN:

- Connection-rule can be chosen from a dictionary of pre-defined connectivity patterns.
 - Most patterns are parallelized using MPI and OpenMP.
- Synapse parameter can be randomized via numerous pre-defined random distributions.
 - Evaluation of random distribution is passed on to the C++-level.
- Usage of common terminology of synapse parameters and distributions in PyNN and NEST.
- Implementation of FixedTotalNumberConnector in PyNN.
Connecting the microcircuit

Connecting two excitatory populations with PyNN:

- Initialize the connector with the number of synapses going from pop1 to pop2.
  ```python
  conn = sim.FixedTotalNumberConnector(n_syn)
  ```

- Set the parameters for the weight and delay distribution.
  ```python
  d_dist = sim.random.RandomDistribution('normal_clipped', [d_m, d_sd, 0.1, np.inf])
  w_dist = sim.random.RandomDistribution('normal_clipped', [w_m, w_sd, 0., np.inf])
  ```

- Initialize the synapse with the weight and delay distributions.
  ```python
  syn = sim.StaticSynapse(weight=w_dist, delay=d_dist)
  ```

- Create the projection from pop1 to pop2.
  ```python
  proj = sim.Projection(pop1, pop2, conn, syn)
  ```
Connecting the Microcircuit

Connecting two excitatory populations with SLI:

- Specify the connectivity pattern and the total number of connections.

 » /conn_dict << /rule /fixed_total_number /N n_syn>> def

- Initialize the weight and delay distributions.

 » /weight_dict << /distribution /lognormal_clipped /mu w_m /sigma w_sd /min 0.0 >> def
 » /delay_dict << /distribution /normal_clipped /mu d_m /sigma d_sd /min 0.1 >> def

- Insert the weight and delay distributions into the synapse dictionary.

 » syn_dict << /weight weight_dict /delay delay_dict >> def

- Connect pop1 with pop2.

 » sources targets conn_dict syn_dict NewConnect
Summary

- model of local cortical network explains cell type specific spike rates
- importance of target specificity
- proposal of handshake mechanism between layers
- already in use as a building block in further studies
- need for brain-scale models
- difficulty of instantiating the model with general purpose simulator
- distributed parameters as a high-level concept
- implemented in next coordinated release of NEST and PyNN
- including open source SLI and PyNN versions of model