Izhikevich Spiking Neuron Model

Wiki » History » Version 11

« Previous - Version 11/45 (diff) - Next » - Current version
Padraig Gleeson, 30 Apr 2014 14:57


This project will contain examples of the Izhikevich spiking neuron model.


To get local clone of this project…

Versions of the project

The original model in MATLAB format has been converted to a number of other formats.


Tested with simulators: NEURON…

NeuroML 2

The XML for an Izhikevich model in NeuroML v2.0 is below:

<code class="xml">
<izhikevichCell id="TonicSpiking" v0 = "-70mV" thresh = "30mV" a ="0.02" b = "0.2" c = "-65.0" d = "6" Iamp="0" Idel="0ms" Idur="2000ms"/></code>

For full examples of single cells see TonicSpiking or PhasicBursting

Tested with simulators: …

Comparison to original model behaviour

table{border:1px solid black}.
{background:#ddd}. |Model|Label |PyNN |NeuroML | Comments |
|Tonic spiking |    A      |OK |    OK ||
|Phasic spiking|    B |OK |    OK ||
|Tonic bursting|    C |OK |    OK ||
|Phasic bursting|    D |OK |    OK ||
|Mixed mode|    E |OK |    OK ||
|Spike freq. adapt.|    F |OK |    OK ||
|Class 1 excitable|    G |not yet implemented|    OK (although new ComponentType generalizedIzhikevichCell required)|    Different model parameterization |
|Class 2 excitable|    H |not yet implemented|    OK ||
|Spike latency |    I |OK|    OK| |
|Subthresh. osc.|    J |OK|    OK| |
|Resonator|    K |not yet implemented|    OK ||
|Integrator|    L |not yet implemented|    PROBLEM|    Different model parameterization|
|Rebound spike|    M |OK|    OK ||
|Rebound burst|    N |OK|    OK ||
|Threshold variability|    O |not yet implemented|    OK ||
|Bistability|    P |PROBLEM|    PROBLEM |
|Depolarizing after-potential|    Q |PROBLEM|    PROBLEM|    Response depending on the time step|
|Accomodation|    R |not yet implemented|    PROBLEM|    Different from fig1|
|Inhibition-induced spiking|    S |PROBLEM|    PROBLEM|    Response depending on the time step|
|Inhibition-induced bursting|    T |PROBLEM |    PROBLEM|    Response diverging on PyNN and depending on the time step on NeuroML|